

### Scalable and Reliable control and Management for SDN-based Large-scale Networks

CJK Workshop @ CFI2014

2014. 06.18.

Taesang Choi ETRI

# Traditional Control & Network Management

OSS NMS . . . **NETWORK DEVICE NETWORK NETWORK** CONTROL **SNMP** CLI DEVICE DEVICE - - -PLANE **MANAGEMENT PLANE** PACKETS IN PACKETS IN PACKETS OUT PACKETS OUT **DATA PLANE** PACKETS OUT PACKETS IN

**NETWORK MANAGEMENT SERVERS** 

# Traditional Control & Network Management

Network functionalities such as data, control, and management planes

 $\rightarrow$  Distributed and embedded within the vendor specific networking devices

Remote management through provisioning and configuration

Closed, inflexible, complex, error-prone, and hard-tomanage production network problems

### SDN has changed the way to manage Nets

Enables direct programming and centralized management by decoupling the network control and forwarding functions

#### Centralized control of multi-vendor environments (standard)

- Devices from any vendor, including switches and routers
- Quick deployment, configuration and updating devices across the entire network

#### Reduced complexity through automation (deployment)

- Flexible network automation and management framework
- Possibility of developing tools that automate many management tasks that are d one manually today

#### Higher rate of innovation (new network functionality)

 Network in real time to meet specific business needs and user requirements as t hey arise

### **Ambiguous SDN Control & Management?**

#### **NETWORK MANAGEMENT SERVERS**



### **Open Daylight Control & Management Arch.**

#### **NETWORK MANAGEMENT SERVERS**



### **Network Management in a Nutshell**

#### Control and measurement

- Control: access control, routing, etc.
- Measurement:
  - Traffic engineering: flow size (elephant flows to route), traffic distribution (estimate rack-to-rack traffic matrix)
  - Accounting

✓ Billing based upon network usage

- Troubleshooting
  - ✓ Find performance bottlenecks
  - ✓ Attacks
  - ✓ Failures

SDN focuses on control of traffic engineering (so far)
Scalability, Availability, and Accuracy issues

### **Major Issues**



- Control messages priority differentiate (annotation)
- Kind of best-efforts for control traffic
- Solutions so far: extension of SW(DevFlow, etc.) and Controller (clustering, hierachy)

#### Availability

99.999% availability for carrier networks

#### Inaccurate and Unreliable Management

- Management practice takes mainly remote approaches
- Network events should be inferred by the remote management systems
  - $\rightarrow$  Potential network problems are often accumulated and enlarged
  - $\rightarrow$  Diagnosis is delayed, inaccurate, unreliable, and not scalable
- SDN remote/centralized control tends to extend legacy network mgmt problems into the control plane

### **Existing SDN Scalability Solutions**



(DevoFlow, DIFANE) to reduce control messages.



### IRIS<CoMan> Architecture



### **IRIS-Controller**

### \* A Spin-off project from Floodlight

#### Floodlight

- Openflow-based SDN Controller from BigSwitch (Open Source)
- Supports Openflow 1.0 (and soon will announce 1.3 support)
- Adopted widely by research communities

### **\* IRIS (2013~)**

- Yet another Openflow-based SDN Controller from ETRI
- With an IO engine implemented from scratch on top of Java NIO
- Supports Openflow 1.0~1.3
  - Floodlight/Loxigen-based Openflow API
- Provides an Open-source version: OpenIRIS (<u>http://openiris.etri.re.kr</u>)
- Provides a northbound API which is fully compliant with that of Floodlight

(to support 3<sup>rd</sup> party applications from various research communities)

- Focus on solving the scalability / availability issues of the centralized control
- Current release is v2.0.8

#### KRnet2014



### **Controller Architecture for Scalability**



### **IRIS-RAON**



#### **RAON** Architecture



#### A Network as a "Big Switch" :- P

Recursive Abstraction of Large Network into a single switch with many ports



### **IRIS-HiSA for Availability**





We believe OF-based brokering middleware will be one of the promising applications of Openflow

#### Considerations

- Addresses exposed to data plane
- Transparency
- Horizontal scalability
- High availability
- State sharing

#### Functionalities

- Load balancing among physical controller instances
- Switch migration
  - For failed controller instances
  - For newer controller instances
- Security
  - Immune to attack such as DDoS

#### KRnet2014

# Software-defined Unified Monitoring Agent

A switch-side agent device providing control and management abstraction layer among SDN controllers, legacy NMS, and Openflow switches

#### **\*** Functionalities:

- Monitoring health of OpenFlow switches
- Inspecting and verify the traffic (management sniffer)
- Aggregation of verbose management information (syslog, SNMP, etc.)
- Classification and prioritization of Openflow Asynchronous control messages
- Filtering unnecessary messages
- Identification of potential DoS attacks

### **SuVMF** Architecture





#### **\* MAC (Modify and Annotate Control)**

- All the events should be inferred by a centralized remote SDN controller
   As the underlying network is an inter-related complex system, it is not straightforward to identify a root cause of a problem or to chain policies.
- Provides algorithms, protocols, and facilities to modify and annotate con trol messages (e.g., adding sequence numbers in the control message) to assist remote network monitoring, control message differentiation, an d resource isolation.

#### DMA (Detect and Mitigate Abnormality)

- Simple network status change (due to failure and attacks) may create v arious cascading critical network malfunctions.
- Detects and mitigates problems as near as the source of the problem.

### **SuVMF Implementation Prototype**





FCP Throughput: 9 mpps, bps 5Gbps ~ 40 Gbps at 64 ~ 512 bytes



8 cores for FCP, 2x4 cores for BMS, 16 cores for UMS(sflow), 2 cores for VMM-agent, and 1 core for embedded Linux. Test traffic is composed of 25% of 4 types OpenFlow msgs, 10% of sflow msgs, 5% of mgmt traffic, 60% of TCP dummy traffic<sub>20</sub> in three different sizes (64, 256, and 512 bytes) out of a total of 10G traffic. The entire system throughput 3,296,000 pps/7.5 Gbps

### **SuVMF Arch. for IRIS Controller Scalability**





## **Overall Architecture: Putting Them Together**



### **Overall Project Overview**







## **Thank You**

### Q & A

### choits@etri.re.kr